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Abstract. Current and upcoming cosmological observations allow us to probe
structures on smaller and smaller scales, entering highly nonlinear regimes.
In order to obtain theoretical predictions in these regimes, large cosmological
simulations have to be carried out. The promised high accuracy from observations
make the simulation task very demanding: the simulations have to be at least as
accurate as the observations. This requirement can only be fulfilled by carrying
out an extensive code validation program. The first step of such a program is the
comparison of different cosmology codes including gravitation interactions only. In
this paper we extend a recently carried out code comparison project to include five
more simulation codes. We restrict our analysis to a small cosmological volume
which allows us to investigate properties of halos. For the matter power spectrum
and the mass function, the previous results hold, with the codes agreeing at the
10% level over wide dynamic ranges. We extend our analysis to the comparison
of halo profiles and investigate the halo count as a function of local density.
We introduce and discuss ParaView as a flexible analysis tool for cosmological
simulations, the use of which immensely simplifies the code comparison task.
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1. Introduction

The last three decades have seen the emergence of cosmology as “precision science”,
moving from order of magnitude estimates, to predictions and measurements at
accuracy levels better than 10%. Cosmic microwave background observations and
large galaxy surveys have led this advance in the understanding of the origin and
evolution of the Universe. Future surveys promise even higher accuracy, at the one
percent level, over a considerably wider dynamic range than probed earlier. In order to
fully utilize the wealth of upcoming data and to address burning questions such as the
dynamical nature of dark energy (specified by the equation of state parameter w = p/p,
p being the pressure, and p the density), theoretical predictions must attain at least
the same level of accuracy as the observations, even higher accuracy being certainly
preferable. The highly nonlinear physics at the length scales probed, combined with
complicated gas physics and astrophysical feedback processes at these scales, make
this endeavor a daunting task.

As a first step towards achieving the final goal, a necessary requirement is
to reach the desired accuracy for gravitational interactions alone, down to the
relevant nonlinear scales. Tests with exact solutions such as pancake collapse [I] are
valuable for this task, but as shown in Ref. [2] the results do not easily translate
into statements about the accuracy of different simulation algorithms in realistic
cosmological simulations. Exactly solvable problems are typically highly symmetric
and hence somewhat artificial. Codes optimized for realistic situations can break down
in certain tests even if their results appear to converge in physically relevant settings.
Therefore, in order to evaluate the accuracy of simulation codes, a broad suite of
convergence and direct code comparison tests must be carried out.

The codes used in this comparison project are all well-established, and have been
key drivers in obtaining numerous scientific results. They are based on different
algorithms and employ different methods for error control. The code developers
have already carried out careful convergence tests themselves and verified to their
satisfaction that the codes yield reliable results. But because of the multi-scale
complexity of the dynamical problem itself, as well as the incompleteness of most
convergence tests, it is necessary to do much more. Therefore, the aim here is to
focus on comparing results from a suite of different codes for realistic cosmological
simulations. In order to avoid uncertainties from statistical sampling, all codes are
run with exactly the same initial conditions, and all results are analyzed using the
same diagnostic tools.

The paper is organized as follows. In Section [2] we describe the ten simulation
codes used for the comparison study. In Section |3| we briefly describe the simulations
carried out for this project. Next, we introduce ParaView in Section[d] one of the main
analysis tools used in this work. We present our results in Section [5[ and conclude in
Section [6l

2. The Codes

The ten codes used in this paper cover a variety of methods and application arenas.
The simulation methods employed include parallel particle-in-cell (PIC) techniques
(the PM codes MC? and PMM, the PM/AMR codes Enzo and FLASH), a hybrid
of PIC and direct N-body (the AP3M code Hydra), tree algorithms (the treecodes
PKDGRAV and HOT), and hybrid tree-PM algorithms (GADGET-2, TPM, and
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TreePM).

The PIC method models many-body evolution problems by solving the equations
of motion of a set of tracer particles which represent a sampling of the system phase
space distribution function. A computational grid is used to increase the efficiency
of the self-consistent inter-particle force calculation. To increase dynamic range, local
force computations (e.g., P3M, tree-PM) and AMR are often used. The grid also
provides a natural basis for coupling to hydro-solvers.

Treecodes are based on the idea that the gravitational potential of a far-away
group of particles is accurately given by a low-order multipole expansion. Particles
are first arranged in a hierarchical system of groups in a tree structure. Computing
the potential at a point turns into a descent through the tree. Treecodes naturally
embody an adaptive force resolution scheme without the overhead of a computational
grid. Tree-PM is a hybrid algorithm that combines a long-range force computation
using a grid-based technique, with shorter-range force computation handled by a tree
algorithm. In the following we give a brief description of each code used in this
comparison study.

2.1. The Grid Codes

2.1.1. MC? The multi-species Mesh-based Cosmology Code MC? code suite includes
a parallel PM solver for application to large scale structure formation problems in
cosmology. In part, the code descended from parallel space-charge solvers for studying
high-current charged-particle beams developed at Los Alamos National Laboratory
under a DOE Grand Challenge [3, 4]. MC? solves the Vlasov-Poisson system
of equations for an expanding universe using standard mass deposition and force
interpolation methods allowing for periodic or open boundary conditions with second
and fourth-order (global) symplectic time-stepping and a Fast Fourier Transform
(FFT)-based Poisson solver. The results reported in this paper were obtained using
Cloud-In-Cell (CIC) deposition/interpolation. The overall computational scheme has
proven to be remarkably accurate and efficient: relatively large time-steps are possible
with exceptional energy conservation being achieved.

2.1.2.  PMM Particle-Multi-Mesh (PMM) [5] is an improved PM algorithm
that combines high mass resolution with moderate spatial resolution while being
computationally fast and memory friendly. The current version utilizes a two-level
mesh FFT-based gravity solver where the gravitational forces are separated into long-
range and short-range components. The long-range force is computed on the root-
level, global mesh, much like in a PM code. To obtain higher spatial resolution, the
domain is decomposed into cubical regions and the short-range force is computed on
a refinement-level, local mesh. This algorithm achieves a spatial resolution of 4 times
better than a standard one-level mesh PM code at the same cost in memory. In [5],
PMM is shown to achieve very similar accuracy to that of MC? when run with the
same minimum grid spacing.

2.1.3.  Enzo Enzdf] is a publicly available, extensively tested adaptive mesh
refinement (AMR), grid-based hybrid code (hydro + N-Body) which was originally
written by Greg Bryan, and is now maintained by the Laboratory for Computational

i http://lca.ucsd.edu/codes/currentcodes/enzo
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Astrophysics at UC San Diego [0 [7, [8, ©]. The code was originally designed to do
simulations of cosmological structure formation, but has been modified to examine
turbulence, galactic star formation, and other topics of interest. Enzo uses the Berger
& Colella method of block-structured adaptive mesh refinement [I0]. It couples an
adaptive particle-mesh method for solving the equations of dark matter dynamics
[11L 12] with a hydro solver using the piecewise parabolic method (PPM), which has
been modified for cold, hypersonic astrophysical flows by the addition of a dual-energy
formalism [I3], [14]. In addition, the code has physics packages for radiative cooling,
a metagalactic ultraviolet background, star formation and feedback, primordial gas
chemistry, and turbulent driving.

2.1.4. FLASH FLASH [I5] originated as an AMR hydrodynamics code designed to
study X-ray bursts, novae, and Type Ia supernovae as part of the DOE ASCI Alliances
Program. Block-structured adaptive mesh refinement is provided via the PARAMESH
library [16]. FLASH uses an oct-tree refinement scheme similar to [17] and [I8]. Each
mesh block contains the same number of zones (162 for the runs in this paper), and its
neighbors must be at the same level of refinement or one level higher or lower (mesh
consistency criterion). Adjacent refinement levels are separated by a factor of two in
spatial resolution. The refinement criterion used is based upon logarithmic density
thresholds. Numerous extensions to FLASH have been developed, including solvers
for thermal conduction, magnetohydrodynamics, radiative cooling, self-gravity, and
particle dynamics. In particular, FLASH now includes a multigrid solver for self-
gravity and an adaptive particle-mesh solver for particle dynamics. Together with
the PPM hydrodynamics module, these provide the core of FLASH’s cosmological
simulation capabilities. FLASH uses a variable time step leapfrog integrator. In
addition to other time step limiters, the FLASH particle module requires that particles
travel no more than a fraction of a zone during a time step.

2.2. The Tree Codes

2.2.1. HOT This parallel tree code [19] has been evolving for over a decade on many
platforms. The basic algorithm may be divided into several stages (the method of error
tolerance is described in Ref. [20]). First, particles are domain decomposed into spatial
groups. Second, a distributed tree data structure is constructed. In the main stage
of the algorithm, this tree is traversed independently in each processor, with requests
for nonlocal data being generated as needed. A Key is assigned to each particle,
which is based on Morton ordering. This maps the points in 3-dimensional space to
a 1-dimensional list, maintaining as much spatial locality as possible. The domain
decomposition is obtained by splitting this list into /NV,, (number of processors) pieces.
An efficient mechanism for latency-hiding in the tree traversal phase of the algorithm
is critical. To avoid stalls during nonlocal data access, effectively explicit ‘context
switching’ is done using a software queue to keep track of which computations have
been put aside waiting for messages to arrive. This code architecture allows HOT to
perform efficiently on parallel machines with fairly high communication latencies [21].
HOT has a global time stepping scheme. The code was among the ones used for
the original Santa Barbara Cluster Comparison Project [22] and also supports gas
dynamics simulations via a smoothed particle hydrodynamics (SPH) module [23].
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2.2.2. PKDGRAV The central data structure in PKDGRAV [24] is a tree structure
which forms the hierarchical representation of the mass distribution. Unlike the more
traditional oct-tree which is used in the Barnes-Hut algorithm [25] and is implemented
in HOT, PKDGRAYV uses a k-D tree, which is a binary tree. The root-cell of this tree
represents the entire simulation volume. Other cells represent rectangular sub-volumes
that contain the mass, center-of-mass, and moments up to hexadecapole order of
their enclosed regions. PKDGRAV calculates the gravitational accelerations using the
well known tree-walking procedure of the Barnes-Hut algorithm. Periodic boundary
conditions are implemented via the Ewald summation technique [26]. PKDGRAV
uses adaptive time stepping. It runs efficiently on very large parallel computers and
has produced some of the world’s highest resolution simulations of cosmic structures.
A hydrodynamics extension called GASOLINE exists.

2.3. The Hybrid Codes

2.8.1. Hydra HYDRA [27] is an adaptive P3M (AP3M) code with additional SPH
capability. In this paper we use HYDRA only in the collisionless mode by switching
off gas dynamics. The P®M method combines mesh force calculations with direct
summation of inter-particle forces on scales of two to three grid spacings. In regions
of strong clustering, the direct force calculations can become significantly expensive.
In AP3M, this problem is tackled by utilizing multiple levels of subgrids in these high
density regions, with direct force computations carried out on two to three spacings
of the higher-resolution meshes. Two different boundary conditions are implemented
in HYDRA, periodic and isolated. The time step algorithm in the dark matter-only
mode is equivalent to a leapfrog algorithm.

2.8.2. GADGET-2 The N-body/SPH code GADGET-2 [28, [29] employs a tree method
[25], to calculate gravitational forces. Optionally, the code uses a tree-PM algorithm
based on an explicit split in Fourier space between long-range and short-range forces
[30]. This combination provides high performance while still retaining the full spatial
adaptivity of the tree algorithm, allowing the code to reach high spatial resolution
throughout a large volume. By default, GADGET-2 expands the tree multipoles only
to monopole order, in favor of a compact tree storage, a cache-optimized tree-walk,
and consistent and efficient dynamic tree updates. The cell-opening criterion used in
the tree walk is based on an estimator for the relative force error introduced by a
given particle-cell interaction, such that the tree force is accurate up to a prescribed
maximum relative force error. The latter can be lowered arbitrarily, if desired, at
the expense of higher calculation times. The PM part of GADGET-2 solves Poisson’s
equation on a mesh with standard fast Fourier transforms, based on a CIC mass
assignment and a four-point finite differencing scheme to compute the gravitational
forces from the potential. The smoothing effects of grid assignment and interpolation
are corrected by an appropriate deconvolution in Fourier space. The time-stepping of
GADGET-2 uses a leap-frog integrator which is symplectic in case constant timesteps
(in the log of the expansion factor) are employed for all particles. However, the
code is normally run in a mode where individual and adaptive timesteps are used
to speed up the calculation time. To this end, the timesteps for the short-range
dynamics are allowed to freely adapt to any power of two subdivision of the long-
range timestep. GADGET-2 is fully parallelized for massively parallel computers with
distributed memory, based on the MPI standard. The code can also be used to simulate
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hydrodynamical processes using the particle-based smoothed particles hydrodynamics
(SPH) method (e.g. [31]), in an entropy conserving formulation [32], a feature which
is however not exercised in the simulations considered in this paper.

2.3.8. TPM TPM [33] 34] is a publicly-available hybrid code combining a PM
and a tree algorithm. The density field is broken down into many isolated high-
density regions using a density threshold criterion. These contain most of the mass
in the simulation but only a small fraction of the volume. In these regions, the
gravitational forces are computed with the tree algorithm while for the bulk of the
volume the forces are calculated via a PM algorithm, the PM time steps being large
compared to the time-steps for the tree-algorithm. The PM algorithm uses the CIC
deposition/interpolation scheme and solves the Poisson equation using FFTs. The time
integrator in TPM is a standard leap-frog scheme: the PM time steps are fixed whereas
tree particles have individual time steps, half of the PM step or smaller.

2.8.4. TreePM The algorithmic structure of the TreePM code [35] is very similar
to GADGET-2. The particles are integrated using a second-order leap-frog method,
with position and canonical momentum as the variables. The time step is dynamically
chosen as a small fraction (depending on the smoothing length) of the local free-fall
time and particles have individual time steps. The force on any given particle is
computed in two stages. The long-range component of the force is computed using
the PM method, while the short range component is computed from a global tree. A
spline softened force law is used. The tree expands forces to monopole order only, and
cells are opened based upon the more conservative of a geometric and relative force
error criterion. The PM force is computed by direct FFT of the density grid obtained
from CIC mass assignment.

3. The Simulations

A previous code comparison suite [2] considered three cosmological test problems:
the Santa Barbara Cluster [22], and two large-scale structure simulations of ACDM
models in a 64h~'Mpc box and a 256h~'Mpc box. In the latter two cases, the primary
target of this previous work was to investigate results in a medium resolution regime,
addressing statistical quantities such as the two-point correlation function, the density
fluctuation power spectrum, and the dark matter halo mass function.

In this paper we focus further attention on one of these tests, the smaller of the
ACDM boxes. Due to the small box size, the force resolution of all codes — including
the pure mesh codes — is in principle sufficient to analyze properties of individual halos
themselves. This allows us to extend the dynamic range of the code comparison to
higher resolution than studied earlier. In this new regime, we expect to see a much
broader divergence of results because of the more demanding nature of the test. (Even
in the previous analysis [2], the power spectrum was unexpectedly deviant at the larger
wavenumbers considered.) Our aim is to characterize the discrepancies and attempt
to understand the underlying causes.

All codes were given exactly the same particle initial conditions at a redshift
zin = 50. The initial linear power spectrum was generated using a fit to the transfer
function [36], a modification of the BBKS fit [37]. This fit does not capture baryon
oscillations but takes baryonic suppression into account (these details are of only
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Table 1. Softening lengths measured in h~'kpc. The different smoothing kernels
have been converted into Plummer softening equivalents by matching the potential
at the origin. While this procedure is only approximate, it makes a comparison
of the different force resolutions more meaningful. For details on the conversion
see the main text.

MC?2 PMM Enzo FLASH HOT PKDGRAV Hydra GADGET-2 TPM TreePM

62.5 62.5 62.5 62.5 7.1 1.6 28.4 7.1 5.1 5.7

limited relevance for the test). The cosmology underlying the simulations is given by
Qcpm = 0.27, Qp, = 0.044, Q4 = 0.686, h = 0.71, 0g = 0.84, and n = 0.99. The
simulation was run with 2563 particles, which leads to an individual particle mass of
m,=1.362-10°0"' M.

While performing a comprehensive code comparison study which involves very
different algorithms — such as grid and particle-based methods in the present case — a
central and difficult question immediately arises: what is the most informative way to
compare the codes and learn from the results? The difficulty is compounded by the
fact that codes are often optimized under different criteria and controlling numerical
error is a complex multi-parameter problem in any case, even for codes that share the
same general underlying algorithm.

As a case in point, let us consider the choice of force resolution for each code.
(Since the volume and number of particles are fixed, the mass resolution is the same
for each run.) One option would be to run all codes with the same formal force
resolution but this, aside from wasting resolution for the high-resolution codes, also
suffers from the problem that it is not easy to compare resolutions across different
algorithms; moreover, time-stepping errors also must be folded into these sorts of
estimates. Finally, such a comparison would be rather uninteresting, because realistic
cosmological simulations are run with higher resolutions than would be possible in a
conservative test of this type: Interesting effects on small scales would be missed. A
more uncontrolled, but nevertheless useful option is to allow every simulator to run her
or his code with close to the optimal settings they would also use for a scientific run
(given the other restrictions imposed by the test problem). In this case, a more realistic
comparison can be performed in which we can access the robustness of conclusions
from cosmological simulations. Here, while our approach adheres more closely to the
second strategy, we do try to assess at what length scales one should expect a specific
code to break down assuming that the resolution of the code is accurately estimated
by the simulator.

The nominal resolutions for the different codes for the performed runs are as given
in Table[I] We have converted the different softening kernels into Plummer equivalents
following the normalization conventions of Ref. [38]. We have matched the different
softening kernels ¢ at zero and compared them at this point. With the normalization
conventions in Ref. [38], we find:

1

d’Plummer(O) S8 Ea (1)
71

¢Spline(0) X gza (2)
20791

Pk (0) X 12 €
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where € is the softening length. The grid resolution of the PM and AMR codes is
roughly equivalent to the Plummer softening. HOT and Hydra have Plummer force
kernels implemented, PKDGRAV uses Dehnen’s K3 kernel [38] and the three tree-pm
codes use spline kernels. With the above definitions, it is easy to convert the spline
and K3 kernels into Plummer via

€Spline = 1.4€prummer, (4)
€Kz = 4.06€plummer> (5)

which we used to standardize the force resolution quotes in Table We note that
some of the codes below could have been run at higher resolution, and the values
below should not be thought of as resolution limits. In fact, the choices of these values
represent compromises due to run time considerations as well as a (loosely) pre-planned
scatter to try and determine the effects of force resolution on the simulation results.

4. Analysis Framework and Tools

Broadly speaking, the major aim of our code comparison project is to characterize
differences in results from large cosmological simulation codes, identify the causes
underlying these differences, and, if possible, develop strategies to reduce or eliminate
the differences in order to obtain reliable results over large length and mass scales.
If it is not possible to eliminate some of the differences, e.g. due to insufficient force
resolution in grid codes, it is still important to provide robust criteria that correctly
determine the scales at which the code can be trusted, and with what accuracy.

The identification and characterization of differences in code results is not as
straightforward as it first appears. Certainly we may, and do, compare standard
statistical quantities such as low-order correlation functions. However, there is much
more information in the data beyond this, e.g., large-scale structure morphology,
substructure in the density field, and subtle features such as the variation in halo
bias as a function of the local environment. For these reasons, it is often very useful to
simply look at the region or object of interest in the simulation and compare it across
the different codes. Following this qualitative comparison — perhaps even inspired by
it — the aim is to construct a hypothesis about the cause for the perceived difference
which then has to be carefully tested with quantitative measures.

It is very desirable to have a framework which combines these two steps in a
convenient, and eventually seamless, manner. The framework should allow differences
and anomalies picked up by eye from data sets to be immediately queried and
quantified using a programmable toolkit. An example relevant to cosmological
simulations is the following. Suppose we “see” fewer halos in one simulation compared
to another. The analysis tool should then provide quantitative information of the
following type: in what areas is the difference larger, what is the exact number count
of the halos in this region, what is the difference in the environment (e.g. by comparing
the local density in the two codes), what is the halo history in the region, and so on.

As part of this paper we include an introduction of ParaView [39] [§| to the
cosmology and the wider computational communities. ParaView has some of the
features discussed above built in and allows the user to implement additional analysis
tools. ParaView is an open-source, scalable visualization tool which is designed as a

§ We use ParaView 2.6 throughout this paper. This is the latest stable release which can be
downloaded at http://www.paraview.org/HTML/Download.html
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Figure 1. Screenshot of the comparative visualization manager in ParaView.
Upper row: results from four different codes, zoomed into a dense region of the
simulations. Particles are displayed as arrow glyphs, colored with respect to their
velocity magnitude. Lower row: same region, the particles now displayed simply
as dots.

layered architecture. The foundation and first layer of ParaView is the visualization
toolkit (VTK). VTK provides data representations, algorithms, and a mechanism to
interconnect these to form a working program. The second layer is a parallel extension
to the visualization toolkit which supports streaming of all data types and parallel
execution on shared and distributed memory machines. The third layer is ParaView
itself. ParaView provides a graphical user interface and transparently supports the
visualization and rendering of large datasets via hardware acceleration, parallelism,
and level-of-detail techniques.

For the code comparison project we have implemented a particle reader which
works with the data format used throughout this paper. This allows other simulators
who wish to test their codes against our results to use exactly the same analysis tool.
As explained later, we have also implemented a diverse set of diagnostic tools relevant
for cosmological simulations. These help to ease the analysis of large simulation data
sets and make it more efficient. We plan to extend the set of available analysis features
in the near future.

5. Results

5.1. Results for the Full Stimulation Box

As an initial test, a simple view of the simulation output at z = 0 proves to be very
useful. ParaView offers a comparative visualization option in which the results from
different simulations can be shown simultaneously. Manipulation on any one output
in this mode results in the same manipulation for all the others. ParaView allows
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Figure 2. A subset of the 20,000 particles at z = 0 from the GADGET-2
simulation (left) and the Enzo simulation (right). The particles are shown with
vector arrow glyphs which are sized and colored by their velocity magnitude (blue:
slowest, red: fastest).

fly-ins, rotation of the box, projections, and has many more features which make it
convenient to inspect the outcome of the simulation. A screenshot of the comparative
visualization manager is displayed in Figure[l]- a zoom into an arbitrary region of the
simulation box showing simultaneous results from four different codes. In the upper
row a subset of the particles is shown as arrow glyphs, colored by velocity magnitude,
the lower row shows the particles as dots with the same coloring scheme. A quick
inspection of these snapshots reveals that the code 2 run had a problem with the
velocities and code 4 had slightly incorrect boundary conditions (the whole picture
being shifted upward). (Of course these initial bugs were fixed before going on to the
final results discussed below!)

Figure[2] shows a comparison of the final GADGET-2 and Enzo outputs. We show
a subsample of 20,000 particles, each displayed with vector arrow glyphs, sized and
colored by their velocity magnitude. The arrow glyphs nicely represent the flows in
the box to the major mass concentrations. As to be expected, particles in the field
are slow (blue), while the particles in the halos have the largest velocities (yellow to
red). While the overall appearance of both simulations shown is very similar, subtle
differences can be seen (e.g., there are no small structures in the flow regions in the
Enzo simulations), indicating the higher resolution employed in the GADGET-2 run.
(Five of the biggest halos in the simulation will be examined in more detail below, the
resolution differences becoming significantly more apparent.)

5.2. Dark Matter Halos

The halo paradigm is central to any large-scale structure analysis; dark matter in
simulations, discretized in the form of heavy collisionless particles, forms clearly
visible filaments (stripes) and halos (clumps of dark matter) through the process of
gravitational instability. Figure [2| shows these structures clearly for the simulations
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studied in this paper. This picture agrees well with observations of galaxy rotation
curves, and velocity dispersions of galaxies in clusters which favor scenarios where
luminous, baryonic matter is embedded in massive, extended, and close to spherical
conglomerates of dark matter. In simulations, dark matter halos can be identified and
“weighed” in different ways. We can measure overdensities (see e.g. [40]) or use group
finding algorithms such as friend-of-friend (FOF) algorithms [41] to find halos.

A remarkable feature of halos was found by Navarro, Frenk, and White [42]: dark
matter halos of all masses, from dwarf galaxies to the largest clusters of galaxies, have
spherically-averaged density profiles that are well-described by a single, “universal”
formula

pede
STV (6)
r/rs (L4+1/rs)
The scaling radius, rs, and characteristic overdensity, J., are free parameters of the
model, while p. is the critical density for closure of the Universe. Even though a
theoretical explanation for this universal profile has not been found, the nature of
the profile itself has received extensive support from simulations carried out by many
different groups [43] (there do remain questions about the behavior at very small radii,
but these are not relevant here).

Here we are interested in the variation of the profiles produced by the different
codes, tending towards the outer region of the halo. This variation may be significant
for determining halo masses via the often used FOF algorithm. The mass that the
halo finder will “see”, strongly depends on the density and density gradient close to
the virial radius (Rago) of a halo. On the other hand, accurately reproducing the
inner slope of a halo profile is the prime test of the code’s force resolution. On scales
below this resolution limit, particle positions get randomized, resulting in a flattened
density profile (numerical errors can also lead to a sharpening of the profile due to an
associated unphysical damping).

We first compare the five heaviest halos from the simulations; their masses range
between approximately 2 to 5 - 10'*h~1 M), thus each halo is sampled with 150,000
or more particles. The individual halo masses (as found by the FOF algorithm) are
in agreement within 3% for all ten codes. Note that the FOF masses found for the
grid codes are slightly higher. This is presumably due to their lower resolution in
this comparison, resulting in less tight halos. The FOF halo finder can identify more
particles in the fuzzier outskirts of lower resolution simulations as belonging to the
halo than in the high resolution runs. The centers of the halos are defined by the
minimum of the local potential of the halo. Here the agreement among the codes is
even better than for the masses — the difference is less than 0.5% of the box size. In
Table [2| we show the center and mass of one of the halos, Halo 3. This halo (also
shown in Figure 7)) has the size and mass of a group of galaxies. The dispersion in
the mass and position of the center is similar for the other halos, whose profiles we
investigate next.

p(r) =

In Figure[3|we present the spherically averaged density profiles for the five heaviest
halos in the simulation. As an arbitrary reference, the black line represents the best
NFW fit (Equation @ for the TPM data. The fit is shown up to the inner 10 A~ 'kpc
of each halo. In addition, we show two residual panels for each halo profile. The upper
panel shows the ratio of all codes with respect to GADGET-2, while the lower panel
shows only the four grid codes and ratios with respect to MC?2.
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Figure 3. Halo profiles for the five heaviest halos in the simulation. The black line
shows the best-fit NFW profile to the TPM simulation, mainly to guide the eye. In the
outer regions all codes agree very well. In the inner regions the fall-off of the grid codes
is as expected due to resolution limitations. The fall-off point can be predicted from the
finite force resolution and agrees well with the results. The middle panel in each plot
shows the ratio of the different codes with respect to GADGET-2. The lower panels
show only the four grid codes and the ratio with respect to MC2.
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Table 2. Halo 3 data: distance of the center from the mean value for all codes,
and the mass of the halo from different simulations.

Code | AXc [kpe/h]  AYe [kpe/h]  AZc [kpe/h]  Mass [1014 Mg /h]
MC? |  -86.23 158.81 -14.68 2.749
PMM |  201.68 33.90 10.24 2.757
Enzo |  -21.36 45.16 11.36 2.745
FLASH |  -41.66 -22.56 -23.10 2.726
HOT | -30.02 -120.54 43.99 2.720
PKDGRAV | 38.58 52.19 -43.98 2.679
Hydra | 19.91 -28.29 0.77 2.721
GADGET-2 |  -27.08 -59.00 -0.70 2.705
TPM |  -36.37 -35.09 1.04 2.697
TreePM | -17.45 -24.62 13.63 2.727

The agreement in the outer part of the halos is excellent. As expected, the codes
exhibit different behaviors on small scales (depending on their force resolution and
time-stepping), thus the inner parts of halos are not always the same. While the high
resolution codes successfully track the profile all the way in to the plotting limits of
Figure the profiles from the mesh codes depart much earlier (60-100 h~'kpc), with
approximately constant density in the core. The onset of the flattening is consistent
with the nominal resolution of the grid codes, which is given in Table.[I] Note that
among the mesh codes there is no significant difference between the fixed mesh codes
which ran at the highest resolution throughout the whole simulation volume, and the
AMR codes whose base mesh spacing is a factor of 4 times lower.

We now study three of the five halos in more detail, restricting attention to
particles within a sphere of radius 2 - Ropg. The profiles of the largest halo, Halo 1,
shown in Figure |3 agree well down to R = 0.06h~'Mpc; at smaller scales the finite
resolution of the grid codes becomes apparent. Nevertheless, the grid codes and the
high-resolution codes among themselves yield very consistent results. Figure [4 shows
the density of Halo 1 for the lower resolution code PMM and the higher resolution code
TreePM in two-dimensional projection. The two-dimensional density field is computed
on a 100x100 grid within the 2 - Rogg region, projected onto the z-direction (another
projection along the z-direction is also shown). The projected density field has been
normalized by dividing out the mean density in this area. The mean density is very
close across the different codes, hence the normalization allows for direct comparisons
of the projected density fields. As mentioned earlier, the positions of the halo centers
(density peaks) are in remarkably good agreement. Due to its higher resolution, the
density in the center of the halo from the TreePM run is slightly higher (as to be
expected from the profiles). In addition, TreePM shows slightly more substructure
on the outskirts of the halo, displayed by the small “hills”. Overall, the halo is very
smooth and well defined, which is reflected in the good agreement of the profiles. The
density plots for the four grid codes are very similar. The small structures around
the halo in the other codes also show only very minor variations, thus the PMM and
TreePM results can be considered to be representative.



The Cosmic Code Comparison Project 14

120
PMM: Halo 1 TreePM: Halo 1

Figure 4. Projected and normalized two-dimensional density for Halo
1 from PMM (left) and TreePM (right). TreePM has a slightly higher
density in the inner region of the halo than PMM, as to be expected from
the different force resolutions. Overall the agreement is very good.

The profiles of Halo 3 show substantially more variation among the different codes
in the inner region, relative to the other four halos. Studying it in more detail, we
first investigate a subset of four codes: MC?, FLASH, GADGET-2, and HOT, covering
a wide range of force resolutions. In Figure [5| we show a zoom into the center of the
halo. The particles are shown in white. Superimposed on the particle distribution
is a 2-dimensional density contour evaluated on a 100x100 grid and smoothed with
a Gaussian filter, projected along the z-direction. (The contouring and filtering are
intrinsic functions in ParaViewﬂID

The overall appearance of the halo is remarkably similar between the codes,
a major feature of the halo being its irregular shape. The left side of the halo is
elongated and a second major peak has developed on the right, leading o a triangular
shape in this projection. This irregularity (seen also very clearly in Figure |§[) is most
likely the reason for the disagreement in the inner part of the profiles. The halo has
probably undergone a recent merger or is in the process of merging. Comparing the
lower resolution runs from MC? and FLASH with GADGET-2 and HOT, the effect of
force resolution is very apparent, the high resolution runs producing significantly more
substructure. GADGET-2 shows slightly more substructure than HOT, which could
be due to the adaptive time stepping used in the GADGET-2 run relative to HOT’s
global time-step.

|| ParaView provides a Gaussian filter called vtkGaussianSplatter. This is a filter that injects input
points into a structured points (volume) dataset. As each point is injected, it “splats” or distributes
values to nearby voxels. Data is distributed using an elliptical, Gaussian distribution function.
The distribution function is modified using scalar values (expands distribution) or normals (creates
ellipsoidal distribution rather than spherical). In general, the Gaussian distribution function f(x)
around a given splat point p is given by f(z) = ScaleFactor-exp(ExponentFactor((r/Radius)?)) where
x is the current voxel sample point; r is the distance |x — p|, ExponentFactor < 0.0, and ScaleFactor
can be multiplied by the scalar value of the point p that is currently being splatted. If points normals
are present (and NormalWarping is on), then the splat function becomes elliptical (as compared
to the spherical one described by the previous equation). The Gaussian distribution function then
becomes: f(x) = ScaleFactor*exp(ExponentFactor x (((rzy/E)?+22)/R?)) where E is a user-defined
eccentricity factor that controls the elliptical shape of the splat; z is the distance of the current voxel
sample point along normal N; and rxy is the distance of x in the direction perpendicular to N. This
class is typically used to convert point-valued distributions into a volume representation. The volume
is then usually iso-surfaced or volume rendered to generate a visualization. It can be used to create
surfaces from point distributions, or to create structure (i.e., topology) when none exists.
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Figure 5. Two-dimensional contour plot of the projected density for Halo 3 from
MC?2, FLASH, GADGET-2, and HOT (left upper to right lower plot). White:
particles, black: contour smoothed with a Gaussian Filter.

Figure 6. Same as in Figurel MC?, FLASH, GADGET-2, and HOT.




The Cosmic Code Comparison Project 16

PMM: Halo 3 Enzo: Halo 3

70 70

60 60
50 50
40 40
30 30

20 20

Hydra: Halo 3 PKDGRAV: Halo 3

70 = e ol = 70
60 60
50 50
40 40
30 30

20 20

TreePM: Halo 3 TPM: Halo 3

Figure 7. Two-dimensional densities from PMM, Enzo, Hydra, PKDGRAV,
TreePM, and TPM for Halo 3. The panel on the top of each graph shows the

projected density. The color coding is the same for each plot, shown in the result
for PKDGRAV.
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Figure 8. Two-dimensional density profile of Halo 4 for MC2?, GADGET-2,
PKDGRAV, and HOT. MC? shows less substructure and is less dense in the
inner region.

Figure [7] shows Halo 3 from the remaining six runs. As in Figure [ the
two-dimensional density is shown on a 100x100 grid. The three-dimensional view
underlines the rather complicated structure of the halo. PMM and Enzo show the
elongated structure with two maxima, whereas the Hydra and PKDGRAV results
differ somewhat from the other codes. They have a more well defined peak and do not
exhibit much of the second structure. TreePM and TPM are very similar to GADGET-
2 and HOT. Overall, Halo 3 has much more interesting features than Halo 1, which
leads to slight discrepancies in the halo profiles among the codes.

Last, we study Halo 4 from a subset of the codes: MC?, GADGET-2, PKDGRAV,
and HOT, covering the grid, tree-PM, and tree codes. The results are shown in
Figure[§] As before, the lower density of the PM code is due to its restricted resolution.
Overall, the agreement is again very satisfying. The centers of the halos are in excellent
agreement, and all four runs show a smaller structure on the left of the main halo. The
exact details of the smallest structures are different which could be due to inaccurate
time-stepping and discrepancies in the codes’ output redshifts.

Overall, the comparison of the largest halos in the box is very satisfactory. The
halo profiles agree on the scales expected from the code resolutions. Differences of the
inner parts can be explained due to very irregular shapes as in Halo 3. The reader
should keep in mind that we did not resimulate the halos with higher resolution,
and that these halos ere extracted straight out of a cosmological volume simulation.
Therefore, the level of agreement is in accord with theoretical expectations.
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Figure 9. Mass function at z = 0, simulation results and the Warren fit (red
line). Lower panel: residuals with respect to the Warren fit. For clarity we only
show the error bars for one code. The dashed line indicates the threshold for 40
particles (force resolution limit for the PM codes, according to Equation )7 the
dotted-dashed line for 2500 particles (force resolution limit for the base grid of
the AMR codes).

5.83. The Mass Function and Halo Counts as a Function of Density

5.8.1. The Mass Function An important statistic in cosmology is the number count
of halos as a function of mass, the so-called mass function. The mass function of
clusters of galaxies from ongoing and upcoming surveys can provide strong constraints
on dark energy [44]. Numerous studies have been carried out to predict the mass
function theoretically [45], [46] [47]. Because halo formation is a strongly nonlinear
dynamical process, the approximations underlying analytic predictions limit the
attainable accuracy for constraining cosmological parameters. Nevertheless, some of
these analyses can help to understand the origin and qualitative behavior of the mass
function.

In order to obtain more precise predictions, several groups have carried out large
N-body simulations to find accurate fits for the mass function [48], 49, 50, 51, (2]. In
addition, the evolution of the mass function has been studied in detail |51}, (53] 52} [54].
The numerical study of the mass function poses several challenges to the simulation
code, especially if one wants to obtain reliable results at the few percent accuracy level:
the number of particles in a halo has to be sufficient in order to prevent systematic
biases in determinations of the halo mass [50], the force resolution has to be adequate
to capture the halos of interest [53] [54], the simulation has to be started at sufficiently
high redshift [53], 54], and finite box corrections might have to be considered if the
simulation box is small [54) 55l [56] (for a comprehensive study of possible systematic
errors in simulating the mass function and its evolution, see [54]).

In this paper we study the mass function at z = 0. We identify halos with a
friends-of-friends (FOF) algorithm [41] with linking length of b = 0.2. The smallest
halo we consider has 10 particles, not because this is physically reasonable (usually the
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minimum number of particles is several times bigger), but because we are interested
in cross-code comparison. We follow the suggestions by Warren et al. [50] and correct
the halo mass for possible undersampling via:

ny™ =mny, (1 - n,:o'ﬁ) , (7)

where ny, is the number of particles in a halo. This correction lowers the masses of
small mass halos considerably.

In order for small halos to be resolved, both mass and force resolution must be
adequate. In Ref. [54], resolution criteria for the force resolution are derived:

(5f nth(z) 1/3
A, <00 { A ’ (®)

with ¢ being the force resolution, A, being the interparticle spacing, and €2,,,(z) the
matter content of the Universe at a given redshift. Equation predicts that all the
non-grid codes have enough force resolution to resolve the smallest halos considered,
while the two PM codes, MC? and PMM, have sufficient force resolution to resolve
halos with more than 40 particles, and that the base grid of the two AMR codes
restricts them to capturing halos with more than 2500 particles. Of course this is only
a rough estimate in principle since the AMR codes increase their local resolution as
a function of density threshold, the question is whether the criteria used for this is
sufficient to resolve halos starting at 40 particles/halo.

We have indicated the resolution restrictions in Figure 9] by vertical lines (dashed:
40 particles, dashed-dotted: 2500 particles). The predictions are good indicators of
actual code results. The AMR codes fall off at slightly lower masses than given by
2500 particles. This shows that the resolution which determines the smallest halos
being captured is dictated by the base grid of the AMR codes and not by the highest
resolution achieved after refinement. Thus, for the AMR codes to achieve good results,
significantly more aggressive density thresholding appears to be indicated. (Similar
results were found in Refs. [2] [9].) As predicted, the mass functions of the PM codes
start to deviate at around 40 particles from the other codes.

Overall the agreement among the codes is very good. For comparison, we show
the Warren fit [50] in red. Due to limited statistics imposed by the small box-size,
the purpose here is not to check the accuracy of the fitting function. At the high
mass end, the scatter is as expected due to the rareness of high-mass halos. In the
medium mass range between 10'2-3 and 10'3*h~1M, all codes agree remarkably well,
down to the percent level. In the small halo regime with as low as 40 particles, the
agreement of the codes — besides the AMR codes as explained above — stays at this
level. This indicates that the halo mass function is a very robust statistic and the
simple resolution arguments given above can reliably predict the halo mass limits of
the individual simulations.

The comparison yields one surprising result, however: the TPM code simulation
has far fewer halos in the regime below 40 particles per halo than the other high
resolution codes. This finding was already pointed out in Ref. [2]. In order to
understand this deficit of halos in more detail we investigate the halo count as a
function of environment in the following.

5.3.2. Halo Count and Density In this section we use ParaView again as the main
analysis tool. One very attractive feature of ParaView is a suite of filter functions.
These filters allow direct manipulation of the data that is visualized. They include
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Figure 10. Small halos (10 particles) in the HOT, MC2, and TPM simulation.
Red points: halos, white dots: subset of the simulation particles. The distribution
and number count of the small halos is different in all three codes.

functions such as Fast Fourier Transforms, smoothing routines via Gaussian filtering
(which we used in the previous section), and tesselation routines, to name a few. We
have implemented additional routines to find halos (a fully parallel FOF halo finder
integrated into ParaView is under development) and to calculate densities from the
particle distribution in order to cross-correlate density with halo counts. We have also
added an interface to the plotting program gnuplot[q]

In the last section we investigated the mass function and discovered a discrepancy
of small halos in the two AMR codes and TPM. The hypothesis for the halo deficit
in the AMR codes is, as discussed above, that the base grid resolution is too low and
allows us only to catch halos with more than 2500 particles accurately. The coarse
base grid in the initial state of the simulation does not allow for small halos to form
and these halos cannot be recovered in the end. This would imply that the AMR
simulations should have a deficit of small halos more or less independent of density:
small halos should be missing everywhere, even in the highest refinement regions. A
possible explanation for the missing halos in the TPM simulation could be a hand-over
problem between the PM and the tree code. In this case, the number of small halos in
high density regions should be correct. A qualitative comparison of three codes (HOT,
MC?2, and TPM) is shown in Figure The red points show halos with 10 particles,
the white dots are a subset of the simulation particles. It is immediately obvious, that
the halo counts in different environments, close to the large halo on the right, or on
in the lower density regions on the left, are different. After this qualitative result, we
have to quantify this finding in order to come to a reliable conclusion about the cause
for the halo deficits.

We use the VTK toolkit to implement a routine that calculates the density field
on a (variable) grid from the particle distribution via a nearest grid point (NGP)
algorithm. The grid size for the density field is usually set by the requirement that
the density field be not too noisy. As a first check we compare the density probability
distribution function (PDF) for the different codes. It is clear that, if the grid for
calculating the density is chosen coarse enough, details should be smoothed out and
the PDF's for the different codes should be in good agreement. In Figure[II]we show the
PDFs for all codes calculated on a 323 grid (left panel) corresponding to a smoothing
scale of 2h~!Mpc and a 643 grid (right panel) corresponding to a smoothing scale of
1h~'Mpec. In both cases all codes agree extremely well, as to be expected since the

€ These new routines are not yet available in the public version of ParaView but we plan to release
them in the near future.
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Figure 11. Probablity distribution function of the densities. Left panel: calculation of

the density on a 323 grid, right panel: calculation of the density on a 643 grid.

smoothing scales are well beyond the code resolutions. We confirmed that this result
holds also for finer grids, up to 2563, which corresponds to the lowest resolution in
the AMR codes Enzo and FLASH. The average number of particles in a grid cell g
on the left panel is 512 particles per cell, in the right panel 64 particles per cell. If we
define the density contrast 6 = (p — p)/p and define void (highly underdense) regions
as regions with a density contrast §V°'4 = —0.8, we find pV°'4 ~ 100 for the left panel
and pV°id ~ 13 for the right panel. In both cases, this threshold is on the right of the
maximum of the curves — a large fraction of the simulation volume is underdense.

Next we investigate the correlation of the numbers of halos with density (measured
by the number of particles per grid cell on a 323 grid). The results for six codes are
shown in Figure [I2] The results for the four other codes are very similar compared
to the codes using the same algorithm (e.g. the FLASH result is very close to the
Enzo result). The scatter plots show three different mass bins: very light halos (10-40
particles) in red, medium mass halos (41-2500 particles) in green, and the heaviest
halos in the simulations (2500 and more particles) in blue. These thresholds were
chosen because, as discussed earlier, the force resolution of MC? and PMM should
be sufficient to resolve halos with more than 40 particles, while Enzo’s and FLASH’s
base grid set this limit to more than 2500 particles. The green and blue crosses are
slightly shifted upward to make all points visible. The cut-offs on the left of the scatter
plots are easy to understand: a certain minimum density is required to have a halo
of a certain size and a certain number of halos, e.g. 50 small halos cannot live in
an underdense cell. Enzo and TPM show the largest deficit of halos, confirming the
mass function results. The small halos in Enzo are mainly missing in the low density
regions, and below §V°'4 there are almost no halos. TPM has a very large deficit
between 1,000-10,000 particles per cell, corresponding to a density contrast § between
1 and 20. This confirms the visual impression from Figure The overall agreement
especially for the larger halos is very good. The largest halo (blue cross on the far
right) seems to be surrounded by a large number of small halos, consistent among all
codes.

To cast the results from Figure[12|in a more quantitative light, Figure [13|displays
the distribution of halos with respect to density for the two lower mass bins. From
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Figure 13. Number of halos as a function of density. Left panel: halos with
10 - 40 particles, right panel: halos with 41 - 2500 particles. The lower panels
show the residuals with respect to GADGET-2. Both panels show the deficit of
small halos in Enzo and FLASH over most of the density region — only at very
high densities do the results catch up. The behavior of the TPM simulation is
interesting: not only does this simulation have a deficit of small halos but the
deficit is very significant in medium density regions, in fact falling below the two
AMR codes. The slight excess of small halos shown in the TreePM run vanishes
completely if the halo cut is raised to 20 particles per halo and the TreePM results
are in that case in excellent agreement with GADGET-2.

Figure we can read off the density range of interest for each mass bin, i.e. the
density range with the largest halo population. We restrict our investigations to a
density threshold of up to 100,000 particles per cell. Figure [I3] shows the results for
10-40 particle (left panel) and 41-2500 particle halos (right panel). The lower panels
show the residuals with respect to GADGET-2. (We have verified that the agreement
for larger halos between the ten codes is very good as expected from Figure ) The
two AMR codes Enzo and FLASH have a deficit for both halo sizes over most of the
density region. They only catch up with the other codes at around 10,000 particles per
cell, in agreement with the our previous argument that whether halos are resolvable
by the AMR codes or not is dictated by the size of the base grid. In terms of capturing
smaller halos, the refinement only helps in very high density regions.

The result for the TPM simulation is somewhat paradoxical: in the low density

L
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region the result for the small halos agrees well with the other high-resolution codes,
however, TPM misses a very large number of small halos in the region between 200 and
10,000 particles per cell, the curve falling even below the AMR codes. This suggests
that the problem of the TPM code is not due to the threshold criterion for the tree but
perhaps due to a hand-over problem between the grid and the tree. The two PM codes
have slightly lower numbers of very small halos, in good agreement with the prediction
that they only resolve halos with more than 40 particles. The agreement between MC?
and PMM itself is excellent. The TreePM code shows a slight excess of small halos
compared to the other high-resolution codes. This excess vanishes completely if the cut
for the small halos is chosen to be 20 particles instead of 10 particles for the smallest
allowed halo. This indicates a slightly higher force resolution in the TreePM run
compared to the other runs. The agreement for the medium size halos (left panel) is
very good, except for the AMR, codes. For the medium size halos, the TPM code again
shows a slight deficit of halos in the medium density regime, but far less pronounced
than for the small halos. The overall agreement of the high-resolution codes is very
good, as is to be expected from the mass function results.

5.4. The Power Spectrum

The matter power spectrum is one of the most important statistics for precision
cosmology. Upcoming weak lensing surveys promise measurements of the power
spectrum at the one percent accuracy level out to length scales of k ~ 10hMpc~!
(for an overview of the requirements for the accuracy of predictions for future lensing
surveys, see, e.g., Ref. [57]). This poses a severe theoretical challenge: predicting the
matter power spectrum at the same level of accuracy. A first step for showing that this
is possible is to investigate how well the matter power spectrum can be predicted from
pure dark matter simulations, baryonic physics being included as a second step. It
has already been shown that at the length scales of interest, hydrodynamic effects can
alter the matter power spectrum at up to 10 percent [58]. In this paper we concentrate
on the first step and determine how well a diverse set of N-body codes agree with each
other for the prediction of the matter power spectrum. In future work we aim to
predict the dark matter power spectrum at k ~ 1hMpc™! at the level of one percent
accuracy or better. This will include a detailed analysis of the accuracy of the initial
conditions as well as of the nonlinear evolution, a task beyond the scope of the current
paper.

We determine the matter power spectrum by generating the density field from the
particles via a Cloud-in-Cell (CIC) routine on a 10243 spatial grid and then obtain the
density in k-space by applying a 10243 FFT. The square of the k-space density yields
the power spectrum: P(k) = (|6(k)?|). The CIC routine introduces a filter at small
length scale. We compensate for this filtering artifact by deconvolving the k-space
density with a CIC window function.

The results for the different codes are shown in Figure Note that the box
size of 64h~'Mpc is too small for a realistic cosmological power spectrum calculation,
as the largest modes in the box no longer evolve linearly. This leads to an incorrect
onset of the nonlinear turn-over in the power spectrum. Nevertheless, the comparison
of the different codes is very informative. The upper panel in Figure [I4] shows the
results for the power spectra themselves. The lower resolution of the grid codes is
very apparent, their results falling away at k ~ 2hMpc~!. The middle panel shows
the residuals of all codes with respect to GADGET-2. All codes agree at roughly 1%
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Figure 14. Power spectrum results and the residuals for the different codes.
Upper panel: comparison of the different power spectra. Middle panel: residuals
of all codes with respect to GADGET-2. Lower panel: Residuals of the mesh
codes with respect to MC2.

out to k ~ 1hMpc~'. PKDGRAV shows small scatter in the linear regime. This
might be caused by imprecise periodic boundary conditions, which are not as easy to
implement in tree codes as they are for grid codes. The high-resolution codes agree
to better than 5% out to k ~ 10hMpc~!. At that point HOT and Hydra lose power,
while PKDGRAV, TPM, and TreePM show slightly enhanced power compared to the
GADGET-2 run. The formal force resolutions of the codes would suggest that the
different runs (including the grid runs) should agree much better at the wavenumbers
shown.

The 10242 FFT used to generate the power spectra is far below the resolution
of the non-grid codes and at the resolution limit of the AMR and PM codes. The
discrepancy might be due to several reasons: the number of time steps, the accuracy of
the force solvers, the accuracy of reaching z = 0 at the end of each run, just to suggest
a few. A more detailed study of the power spectrum including larger simulation boxes
is certainly required to obtain the desired accuracy for upcoming surveys. In the lower
panel we show a comparison of the grid codes only, with respect to MC?. The two
pure PM codes, MC? and PMM agree remarkably well over the whole k-range under
consideration, the difference being below 1%. The two AMR codes, Flash and Enzo,
deviate considerably, most likely due to different refinement criteria. It is somewhat
surprising that Enzo has larger power than the two PM codes, which have the same
resolution in the whole box that Enzo has only in high density regions. This could be
the result of an algorithmic artifact in the AMR implementation.
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To summarize, the agreement for the matter power spectrum is at the 5% level
over a large range in length scale. The early deviation of the grid codes is surprising, as
the nominal resolution of all codes should have been sufficient to generate agreement
over a wider k-range. In order to be able to obtain more cosmologically relevant
results at & ~ 1hMpc~!, much larger simulation boxes have to be compared. At
higher wavenumbers, baryonic effects become important leading to the necessity of a
much more involved comparison set-up.

6. Conclusion and Discussion

The new era of precision cosmology requires new standards for the reach and
accuracy of large cosmological simulations. While previously, qualitative answers and
quantitative results at the 20% accuracy level were sufficient, we now need to robustly
predict nonlinear physics at the 1% accuracy level. This demanding task can only be
achieved by rigorous code verification and error control.

In this paper we have carried out a comprehensive code comparison project with
10 state-of-the-art cosmological simulation codes. ParaView was introduced as a
powerful analysis tool which should make it more convenient for code developers
to compare results. In particular, results from the current suite of simulations can
function as a good database for reference purposes and benchmarking. The initial
conditions are publicly availabldﬂ

The results from the code comparisons are satisfactory and not unexpected, but
also show that much more work is needed in order to attain the required accuracy for
upcoming surveys. The halo mass function is a very stable statistic, the agreement
over wide ranges of mass being better than 5%. Additionally, the low mass cutoff for
individual codes can be reliably predicted by a simple criterion.

The internal structure of halos in the outer regions of ~ Ry also appears to be
very similar between different simulation codes. Larger differences between the codes
in the inner region of the halos occur if the halo is not in a relaxed state: in this
case, time stepping issues might also play an important role (e.g. particle orbit phase
errors, global time mismatches). For halos with a clear single center, the agreement is
very good and predictions for the fall-off of the profiles from resolution criteria hold
as expected. The investigation of the halo counts as a function of density revealed an
interesting problem with the TPM code, the simulation suffering from a large deficit
in medium density regimes. The AMR codes showed a large deficit of small halos over
almost the entire density regime, as the base grid of the AMR simulation set too low
a resolution limit for the halos.

The power spectrum measurements revealed definitely more scatter among the
different codes than expected. The agreement in the nonlinear regime is at the 5-10%
level, even on moderate spatial scales around k& = 10hMpc~!. This disagreement on
small scales is connected to differences of the codes in the inner regions of the halos.
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